
AFRL-VA-WP-TR-2006-3074  
AIR VEHICLE TECHNOLOGY 
INTEGRATION PROGRAM (AVTIP) 
Delivery Order 0008: Open Control Platform 
(OCP) Software Enabled Control (SEC) Hardware 
in the Loop Simulation Program 
 
Eric Portilla  
Northrop Grumman Corporation  
One Hornet Way  
El Segundo, CA  90245 
 
 
 
JULY 2004 
 
 
Final Report for 01 October 2001 – 28 May 2004 
 
 
 

Approved for public release; distribution is unlimited.  

 
STINFO COPY 

 
 
 
 
 
 
 
 
AIR VEHICLES DIRECTORATE  
AIR FORCE MATERIEL COMMAND 
AIR FORCE RESEARCH LABORATORY  
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542 



 
NOTICE 

 
Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government. 
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation; or convey any rights or permission 
to manufacture, use, or sell any patented invention that may relate to them.  
 
This report was cleared for public release by the Air Force Research Laboratory Wright Site 
(AFRL/WS) Public Affairs Office (PAO) and is releasable to the National Technical Information 
Service (NTIS). It will be available to the general public, including foreign nationals.  
 
PAO Case Number: AFRL/WS 06-1261, 10 May 2006. 
 
 
THIS TECHNICAL REPORT IS APPROVED FOR PUBLICATION. 
 
 
 
 
 
//Signature//      //Signature// 
STANLEY H. PRUETT  GARY K. HELLMANN, Chief 
Aerospace Vehicles Technology  Aerospace Vehicles Technology 
Assessment & Simulation Branch Assessment & Simulation Branch 
 
 
 
//Signature// 
JEFFREY C. TROMP 
Senior Technical Advisor 
Control Sciences Division 
Air Vehicles Directorate 
 
 
 
 
 
 
 
 
 
 
 
 
This report is published in the interest of scientific and technical information exchange and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 



i 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis 
Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 

July 2004 Final 10/01/2001– 05/28/2004 
5a.  CONTRACT NUMBER 

F33615-00-D-3054-0008 
5b.  GRANT NUMBER 

4.  TITLE AND SUBTITLE 

AIR VEHICLE TECHNOLOGY INTEGRATION PROGRAM (AVTIP) 
Delivery Order 0008: Open Control Platform (OCP) Software Enabled Control (SEC) 
Hardware in the Loop Simulation Program 5c.  PROGRAM ELEMENT NUMBER 

0609199 
5d.  PROJECT NUMBER 

A0D1 
5e.  TASK NUMBER 

 

6.  AUTHOR(S) 

Eric Portilla 

5f.  WORK UNIT NUMBER 

  0A 
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  8.  PERFORMING ORGANIZATION 

  REPORT NUMBER 

Northrop Grumman Corporation  
One Hornet Way  
El Segundo, CA  90245 

     NOR 04-801 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSORING/MONITORING 
AGENCY ACRONYM(S) 

AFRL-VA-WP Air Vehicles Directorate 
Air Force Research Laboratory  
Air Force Materiel Command 
Wright-Patterson Air Force Base, OH 45433-7542 

Defense Advanced Research Projects 
Agency (DARPA) 
3701 N. Fairfax Drive  
Arlington, VA 22203 

11.  SPONSORING/MONITORING 
AGENCY REPORT NUMBER(S) 

  AFRL-VA-WP-TR-2006-3074 
12.  DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited.  
13.  SUPPLEMENTARY NOTES 

Report contains color. PAO Case Number: AFRL/WS 06-1261, 10 May 2006. 
14.  ABSTRACT 

These annotated Final Review charts summarize the work performed for the Open Control Platform (OCP) Software 
Enabled Control (SEC) Hardware in the Loop (HITL) Delivery Order #0008 under the Air Vehicles Technology 
Integration Program (AVTIP) contract awarded to Northrop Grumman Corporation (NGC). The OCP HITL program 
developed a Hardware-in-the Loop facility for demonstrating and evaluating High-Confidence Software and Systems 
(HCSS). Boeing, AFRL, and NGC created and implemented an architecture that provided AFRL/VAC with the baseline 
capability to test control algorithms (including collision avoidance and Fault Detection Isolation), run combined piloted 
and autonomous vehicle simulations, and created an interface to AFRL visualization software Virtual Battlefield 
Management System (VBMS) and SubrScene. 

15.  SUBJECT TERMS 
Flight Simulation, Hardware-in-the-Loop Simulation, Infinity Cube Simulator, Middleware, Open Control Platform, 
Software Enabled Control 

16.  SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a.  REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

17. LIMITATION  
OF ABSTRACT: 

SAR 

18.  NUMBER OF 
PAGES 

    44 
         Stanley H. Pruett 
19b.  TELEPHONE NUMBER (Include Area Code) 

N/A 

 Standard Form 298 (Rev. 8-98)   
Prescribed by ANSI Std. Z39-18 

 



1

OCP Hardware-in-
the-Loop Final 
Review

OCP Hardware-in-
the-Loop Final 
Review

Eric Portilla
Program Manager

May 28, 2004

Wright-Patterson Air Force Base, Ohio

Abstract:
These annotated Final Review charts summarize the work performed for the 
Open Control Platform (OCP) Software Enable Control (SEC) Hardware in the 
Loop (HITL) Delivery Order #0008 under the Air Vehicles Technology 
Integration Program (AVTIP) contract awarded to Northrop Grumman
Corporation (NGC). The OCP HITL program developed a Hardware-in-the 
Loop facility for demonstrating and evaluating High-Confidence Software and 
Systems (HCSS). Boeing, AFRL, and NGC created and implemented an
architecture that provided AFRL/VAC with the baseline capability to test control 
algorithms (including collision avoidance and Fault Detection Isolation), run 
combined piloted and autonomous vehicle simulations, and created an interface 
to AFRL visualization software Virtual Battlefield Management System 
(VBMS) and SubrScene.

1



2

Northrop Grumman Final 
Review

OCP Hardware-in-the-Loop 
Demonstration Program

2



3

Presentation Outline

Program Summary
Program Results/Lessons Learned
• Scenario 1 - 1-On-1 Non-Cooperating
• Scenario 2 - 1-On-1 Cooperating
• Scenario 3 - Human-in-the-Loop

Final Simulation Demonstration
• Scenario 4 - Formation Flight (Pack Formation)
• Scenario 5 - Formation Flight (S-Curve)
• Scenario 6 - Formation Flight With Collision Avoidance
• Scenario 7 - Formation Flight Random Fault Triggering

Path Forward

3



4

Program Objective

Support AFRL/VAC in Developing a Hardware-in-the-
Loop (HITL) Facility for Demonstration and Testing.

Develop Control and Failure Detection Isolation 
Reconfiguration (Application Level) Algorithms Necessary 
to Support the Demos.

• Collision Avoidance Algorithm and Its Associated Primitive 
Maneuvers
• 4D Waypoint Following
• Limited Mission/Pack Manager (Station Keeping Algorithm)
• Limited Fault Manager

Develop Real Time Software with OCP on Windows 
Platform and Implement on a RT Linux/Hardware-in-the-
Loop Environment.
Create OCP Architecture Inducive to Testing New Vehicle 

The objective of this program was to support AFRL/VAC in developing a 
Hardware-in-the Loop (HITL) facility for demonstrating and evaluating High-
Confidence Software and Systems (HCSS). We as a team (Boeing, AFRL, and 
NGC) created and implemented an architecture that provides AFRL/VAC with the 
baseline capability to test control algorithms (including collision avoidance and 
FDIR), run combined piloted and autonomous vehicle simulations, and create 
visualization through VBMS and Subrscene. To support these demonstrations NGC 
provided a UAV model as well as a Generic Tactical Fighter (GTF) model along 
with an inner loop controller for each. The outer loop controller algorithms were 
developed with generality in mind for use with both types of vehicles creating a 
uniform architecture for all vehicles.  These algorithms were integrated into the 
OCP middleware environment on a Windows OS platform and handed off to Boeing 
who then ported the developed simulation into Linux and VxWorks on a PowerPC 
board for the hardware in the loop demonstration.

4



5

Collision Avoidance – TCAS II

TCAS/
ADS-B

Mode S/
IFF

ARINC
429

Modes:
• Test
• Standby
• Xponder (A/C & S)
• TA
• TA/RA
• ADS-B

VMS Input:
• Ownship Altitude (ASL & AGL)
• Ownship Performance Limits

TCAS Sensor Input:
• Horizontal Range
• Bearing
• Altitude

TCAS Detect & Avoid Output:
• Threat Level
• Commands Safe Altitude

Traffic Alert/ Collision Avoidance System II was established as the baseline for all 
vehicles collision avoidance. The HITL TCAS model was initially developed from 
Pseudo-Code and evolved  throughout the program to accommodate autonomous 
control, cooperative maneuvering, and specific vehicle envelope limitations (i.e. 
ceiling/floor).
TCAS consists of two main functions. The first function is to communicate 
positions between vehicles. Each vehicle broadcasts its altitude, determines range 
and bearing from the return signal. This data is then used by the second function 
consisting of a collision avoidance algorithm. This algorithm produces a suggested 
rate of climb to resolve the impending collision scenario.
The first version of TCAS modeled focused solely on the collision avoidance 
algorithm. The model assumed all vehicle states were known, removing the need to 
infer velocities and body attitudes, and emphasized converting a passive TCAS 
alerting system into an active autonomous maneuver command. Delays and filters 
were used to avoid alerts cycling on and off and to smooth commands. For the 
second version, the dive/climb logic was updated to accommodate cooperative 
collision avoidance. The final version was modified to more accurately represent the 
sensor side of TCAS. Only relative range, relative altitude, and bearing were 
available and tracked to estimate all unknown states.

5



6

Collision Avoidance – Sensor Enhancement

Sensor Data 
Management 

& 
Correlation
• Establish 

Sensor 
Data 
Tracks

• Correlate 
Sensor 
Data to 
Intruders

TCAS

Tracking
Filter

• One Filter for 
Each Intruder TCAS 

Mode

Integrated Vision Sensor  Model

Sensor

Sensor

The original vehicle architecture specified an OCP component for situational 
awareness sensors. This component originated as a second source of the 
communicated vehicle data with added sensor noise. By creating a second source of 
vehicle data the Fault Detection Isolation algorithm could detect signal failures and 
compensate for them. To demonstrate the versatility of OCP the final demonstration 
integrated simple vision algorithms. These algorithms converted absolute position 
received from the communication link to range, elevation, and azimuth angles and 
signal strength based on relative distance and vehicle size. With this added feature, 
vehicles could be initialized to transmit data to be passed via the communication 
link or if not available, then sensor data from theses vision models would be 
available to analyze the data for input into the collision avoidance algorithm.

6



7

Outer Loop Controls
Pack Controller Has Two Modes
• Waypoint Following
• Station Keeping
• Mode Switching Occurs 

• Loss of Communication With Leader
• TCAS Failure in Leader
• External Source (Mission Objectives Change)

Waypoint Guidance
• North, East, Altitude, Time (4D)
• Commands Bank, Altitude, and Velocity

Station Keeping (SEC Developed)
• Follower Tracks Translating waypoint (Leader Position)
• Follower Tracks With Longitudinal, Lateral And Altitude Offset
• Commands Gamma, Chi, and Velocity

The Outer Loop controller developed consisted of two pack controller modes which 
commanded one guidance routine. The first mode was a 4-D waypoint follower 
developed for the initial 1 on 1 non-cooperating scenarios which tracked North, 
East, Altitude, and time by commanding bank angle, altitude, and velocity. The 
second mode was a station keeper developed for formation flight scenarios. The 
station keeper algorithm tracks the lead vehicles position with a longitudinal, lateral, 
and altitude offset. The station keeper commanded gamma, chi, and velocity. The 
difference in the two modes’ commands created a need for modification to the 
architecture.  An additional signal was added to the OCP Component Info file and 
the environment was regenerated using the Application Programming Interface 
(API) backend tool.The guidance routine will take in the data sent from the pack 
controller and, depending on the mode, run the correct method to return the 
commands to drive the inner loop controller (alpha, beta, mudot, and throttle).  
The vehicle’s outer loop control mode was determined during initialization whether 
the vehicle was designated a leader or a follower. Once the scenario began, mode 
switching would occur when the Fault Detection Isolation (FDI) detected any one of 
multiple faults. These faults included loss of communication with the leader, loss of 
TCAS in the leader, and/or erratic leader behavior. In the final scenario the only 
fault demonstrated was the detection of a hard over control surface failure in the 
lead vehicle.

7



8

Filter tasks:
• Optimally fuse asynchronous vision and communications data
• Infer velocities and body rates from noisy position and attitude

measurements (Cat 3)
• Provide smoothed position and attitude estimates
• Reject bad data, detect sensor or leader failures
• React to unexpected maneuvers

Filter uses attitude information to predict vehicle maneuvers
• Bank angle is measure of turning rate

• Filter mechanism not restricted to level turns
• Pitch angle combined with flight-path angle gives angle of attack

• Indicates changes in lift and vertical acceleration
• Aero properties of target vehicle assumed unknown
• Filter estimates lift coefficient (CLα) and trim angle of attack
• Deviations from simplified lift equation modeled as random 

acceleration (Markov process)

Kalman Filter FDI Description (SEC)

The Kalman filter used for FDI was developed under the DARPA SEC program. 
The filter inputs data from two sources. The first data set sent via the 
communication link includes position, attitude, and velocity information while the 
second source of data originated from the situational awareness sensors and 
consisted of position data only. The filter receives these two independent data sets 
and provides smoothed position, velocity, and attitude estimates while removing 
erroneous data and flagging sensor or communication failures. This smoothed 
filtered data is then compared to predefined vehicle maneuver models to determine 
a probabilistic match. The predefined maneuvers consisted of a baseline straight and 
level flight mode, a low G turn mode, a high G turn mode, a climb mode, a climb 
and turn mode, and an uncontrolled roll mode, which acted as a catch all for 
irregular vehicle performance. The uncontrolled roll model was the mode used in 
HITL to detect leader failures.

8



9Multi-Model Probabilities

t = 0 to t = 15 sec
Straight & level flight

t = 15 sec
Start climb and turn

t = 35 sec
Sensor fault

t = 0 to t = 15 sec
Straight & level flight

t = 15 sec
Start climb and turn

t = 35 sec
Sensor fault

Inertial Axis EstimatesBody Axis Estimates

Wind Axis Estimates

Theses graphs depict the Kalman filters outputs for a sample flight path which 
consisted of a straight and level flight for 15 seconds, followed by a 20 second 
climb and turn maneuver and ended with a vision sensor fault at 35 seconds. The 
multi-model probability graphs on top display the raw probability outputs of the 
filter. These raw probabilities are then processed to determine what vehicle 
maneuver the lead vehicle is performing. The purpose of this was to remove false 
model matches derived from the raw data alone. An example of this is seen in the 
Sensor Fault model shown in the top right graph. The raw data depicts a sensor fault 
at 15 seconds incorrectly. This false alarm was caused by two factors. The first was 
the mode switching from straight and level flight to climb and turn, the second was 
that the vision sensor data was updated at a faster rate than the communication data. 
The predictive states assume a continued straight and level flight and since the 
sensor data shows the climb and turn before the communication data it is assumed, 
for an instance, that the sensors have failed. Once the communication data was 
updated the sensor fault model probability drops back to near 0 until the actual fault 
occurred at 35 seconds. The filter also estimates wind based on a comparison of 
vehicle positions, attitudes, and velocities.

9



10

Kalman Filter HITL Application
Filter Code Unable To Run Real-Time At 50 Hz

• Designed Flexible Time Steps And Packet Sizes
• Not Optimized For Speed

Modified To Run Parallel To Simulation
• Used For Modal Analysis Only

• Monitor Uncontrolled Roll
• Estimations Not Used

Filter Not Specifically Tuned To The Particular Vehicle
• Limits Capabilities

Simple Logic Applied For Dynamic Leader Switching
• Maintain Pack Position
• Cycle’s Thru Pack Vehicle ID’s
• Filter Delay And Restart To Avoid False Triggering

The Kalman filter was developed for robustness not speed under the SEC program 
and therefore was unable to run at the 50 Hz needed to support the HITL simulation. 
To compensate for this the filter was slowed to run on a separate 2Hz thread in 
OCP. While this degraded the usefulness of the filter’s estimation data it did 
provide an opportunity to display the multi rate functionality of OCP. The reduction 
in rate made the state estimation data from the filter useless for the purpose of 
driving the station keeping algorithms. Therefore the filter was modified to run 
parallel to the simulation loop and act only as a fault monitor. Without the use of 
the Kalman filters state estimation, the communication loss fault scenario became 
an impossibility. The raw vision sensor data alone could not be used to drive the 
station keeping algorithm which relies on body rates and velocities which were to 
be provided by the Kalman filter.
The simulation architecture was designed so that the filter was only run in follower 
vehicles during pack scenarios and only monitored the lead vehicle. Simple mode 
transition logic was implemented to use the uncontrolled roll filter model output to 
reconfigure the vehicles outer loop controller. A fault in the lead vehicle would 
trigger a reclassification of the lead vehicle to an intruder and the appointment of 
new leader. The pack reposition themselves around the new leader. The changing of 
lead vehicles requires the filter to be reset and a delay to be implemented in order to 
avoid false fault triggering during the transition.

10



11

•SEC Cooperative FDI in Wingman Detects 
Anomalous Ownship Behavior
•Intruder Utilizes Tcas for Avoidance.
•Wingman Utilizes Instinct Maneuver Blended 
with Tcas.

Same
Rogue 

Ownship
(Ownship Continually 

Maneuvers to Hit 
Intruder Or Wingman)

•Ownship & Wingman Change Roles.
Same

Ownship Tcas 
Loss

•Vision Sensor Replaces Communication Data.
•Increased Separation
•Wingman Utilizes Own Tcas

Same
Ownship-Wingman

Comm Loss

•SEC Cooperative FDI in Wingman Detects 
Anomalous Ownship Behavior
•Intruder Utilizes Tcas for Avoidance.
•Wingman Utilizes Instinct Maneuver Blended 
with Tcas.

•Before Intruder Avoidance Maneuver
•During  t < TCPA

•At t = TCPA

•Immediately After Initiation

Hard Over 
Surface

MitigationTest ConditionsFault

Everybody has Travel Alert/ Collision Avoidance System 
& Talks to Everybody.

Wingman Ignores (Tcas) Until Ownship Failure

Fault Scenarios

A fault matrix was developed around four separate faults (hard over control surface 
failure, communication loss between pack, TCAS failure in leader, and a rouge 
ship). These faults were designed to test the fault detection as well as the 
reconfigurability and robustness of the control algorithms. Each fault was to be 
inserted at different times throughout the scenario with respect to a collision 
engagement. Unfortunately time and cost constraints limited the fault testing to non-
engagement scenarios removing the insertion time distinction as well as the 
Ownship TCAS Loss failure. Also, as mentioned before, the Comm loss scenario 
was removed due to the inability of the Kalman filter to run at a rate fast enough to 
provide estimated data to drive the station keeping algorithm.
The remaining two fault scenarios, rogue Ownship and hard over surface, turned out 
to be very similar. In each case, the lead vehicle was determined to have incurred a 
failure and the follower vehicles in the pack remove the leader from the pack filter 
which results in the leader becoming an intruder. The collision avoidance algorithm 
takes over and maneuvers away from any conflicts. 

11



12

Ownship OCP Software Architecture

Vehicle
Model

Inner Loop
Control

Pack
Controller

Guidance

Mission
Manager

Situational
Awareness

Sensors

Comm Link

Mission
Objectives

Vehicle
Sensors

F
D
I
R

Process 2
Controller

Process 1
Plant

VBMS
Receiver

Data Base
Interface

Process 3
Data I/O

Throughout the program the above architecture was used as a baseline for the 
Ownship/UAV model. Each box represents an OCP component and are separated 
into three OCP processes allowing for a distributed simulation to be run on multiple 
platforms. The first process consisted of the vehicle model as well as the interface to 
the visualization tool VBMS. The second process contained all of the controller 
algorithms which were hosted on a PowerPC board. The final process contained the 
components that represented the external data interfaces. This included the 
situational awareness sensors data, the communication link data and the mission 
objectives data. As the program progressed, components were gradually populated 
in a sequence which supported the three Demonstration/Reviews. The one 
modification made mid program to this architecture was the addition of a second 
signal between the Pack Controller and the Guidance components. This second 
signal was necessary to accommodate the two controller modes (station keeping and 
waypoint following) of the final demonstration. This modification was facilitated 
through the OCP Controls API tools without major implication to the simulation.

12



13

GTF OCP Software Architecture

Vehicle
Model

Inner Loop
Control

Pack
Controller

Guidance

Mission
Manager

Situational
Awareness

Sensors

Comm Link

Mission
Objectives

Vehicle
Sensors

F
D
I
R

Process 2
Controller

Process 1
Plant

VBMS
Receiver

Data Base
Interface

Process 3
Data I/O

Command
Selection/
Blending

HOTAS
Interface

Process 4
HOTAS

The Generic Tactical Fighter (GTF) models architecture was based on the same 
components as the UAV with the addition of a 4th process which inputs pilot stick, 
throttle, and rudder commands. The Command Selection/Blending component was 
also added to the controller process. This component smoothed the transition 
between autopilot and pilot commands. The vehicle model and inner loop controller 
were replaced with a Generic Tactical Fighter model based on NASA Technical 
Paper 1538. The inner loop controller developed for this paper was based on a 
piloted vehicle and so the inner loop controller was driven by pilot commanded 
rudder, and lateral and longitudinal stick forces. Unfortunately the autopilots 
guidance algorithm for the UAV commanded alpha, beta, and roll rate. In order to 
create a common interface to the inner loop controller, the pilot’s commands were 
converted to Nz, roll, and yaw commands inside the HOTAS interface component 
before being sent to the selection/blend component. The original guidance routine 
was also modified to coincide with the NZ, roll, and yaw command interface. The 
interchangeability of the pilot and autopilot commands enabled the blending of the 
two sources which allowed for smoothing of the transition between the two modes.
All other components remained exactly the same between the two models. 

13



14

Data Base Architecture

Data Base
Interface

Data Base
Interface

Data Base
Interface

Data Base
Interface

Data Base
Interface

Data Base
Interface

Chan 1

Chan 5

Chan 4

Chan 3

Chan 2

Vehicle 1

Vehicle 3

Vehicle 5

Vehicle 2

Vehicle 4

Vehicle 6
Chan ...

Chan 6

CORBA
Data Base

The CORBA database was based on a publish/subscribe system. Each vehicle 
would publish its communicated data to a specific section of memory and then 
subscribes to all other vehicle’s memory allocations to access their data. This 
allowed the creation and destruction of vehicles throughout the simulation as long 
as the parent vehicle is running. The parent vehicle creates the database and sets the 
number of vehicles needed to start the simulation and for simplicity purpose was 
always specified as the Ownship. It creates the database and waits for all other 
vehicles to register before it sets the run flag which started all the vehicles in the 
simulation. This operation provided a method to synchronize the individual 
vehicles. This functionality was later replaced by the implementation of a master 
OCP trigger which controlled all vehicle’s components timing developed by 
Boeing. The need for a more precise synchronization of the vehicles was found to 
be necessary for station keeping in tight formation and particularly for use in the 
Kalman filter where data time stamps were needed. If the time stamps from each 
vehicle were not synchronized the filter was more likely to fail due to futuristic data 
created by vehicles with time stamps later than that of the internal vehicle’s clock. 
The end product was a dynamic database external to all simulated vehicles used to 
pass information between the vehicles.

14



15

Data Base Communication
Each Vehicle Publishes And Subscribes To A Specific CORBA 

Data Base Developed By Boeing
• Allows Dynamic Creation And Destruction Of Vehicles
• Allows Synchronization For Repeatability
• Allows Multiple Instance of The Same Model To Be Used

• Ease Creation Of Multiple Vehicle Scenarios
• Increases Flexibility of The Scenarios

• More Representative Of Real World Application

There were many reasons for transitioning to a data base versus the method used in 
the 1 on 1 cooperating demonstration. In the 1 on 1 cooperative demonstration two 
vehicles were simulated and communicated via OCP signals. The simulation’s 
architecture had one OCP instance which included both vehicles. Under this system 
there were a total of seven processes and over 20 components. This turned out to be 
above the limit which OCP could handle and required a modification of OCP by 
Boeing to accommodate. Although this enhanced the capability of OCP it was also 
seen to be a bit unrealistic. The OCP middleware would not be used to 
communicate between vehicles in real world applications. In addition to this, plans 
for pack formation flight with an intruder would increase the size of the OCP 
instance to the point of being unmanageable. Another drawback to this method of 
communication was the need for a different architecture set up for all different 
scenarios. There was no flexibility in the number of vehicles of the scenarios. The 
addition of the data base allowed for multiple instances of a single model to be used 
to create multi vehicle simulations. Only one architecture was needed and the 
number of vehicle combination scenarios became limitless. A scenario could consist 
of as many vehicle as desired. The ability to create and destroy vehicles throughout 
the simulation was also a benefit which became an apparent during the second 
demonstration while flying with a pilot in the loop. Whenever the pilot made a 
mistake and crashed the GTF, the entire simulation died causing a complete restart 
of all vehicles in the simulation. Under the new architecture, if the GTF crashed, 
another instance could be started up while the simulation continued without 
interruption.

15



16

Presentation Outline

• Program Summary
• Program Results/Lessons Learned

• Scenario 1 - 1-On-1 Non-Cooperating
• Scenario 2 - 1-On-1 Cooperating
• Scenario 3 - Human-in-the-Loop

• Final Simulation Demonstration
• Scenario 4 - Formation Flight (Pack Formation)
• Scenario 5 - Formation Flight (S-Curve)
• Scenario 6 - Formation Flight With Collision Avoidance
• Scenario 7 - Formation Flight Random Fault Triggering

• Path Forward

16



17

Demonstration Scenarios

1-On-1 Non-Cooperating

1-On-1 Cooperating

Random Fault Triggering

Human-in-the-Loop

Formation Flight

Five demonstration scenarios were chosen to test the HITL simulation. These 
scenarios were sequenced in a way which built upon each other to aid in the 
development of the simulation. Each scenario demonstrated added functionality 
and/or new hardware to the simulation. The first scenario was designed to integrate 
a vehicle into OCP and run as an all software Windows based demonstration. The 
second scenario integrated the GTF model into OCP along with the addition of 
communication capabilities between the vehicles allowing cooperative conflict 
resolutions. The third scenario added a pilot interface to the GTF model enabling 
the incorporation of the Infinity Cube simulator in the VACD laboratory. For both 
the second and third scenarios the Ownship's control algorithms were hosted on the 
PowerPC hardware. The fourth scenario incorporated formation flight capabilities 
while the fifth scenario added fault insertion to the formation flight. The end result 
was a simulation architecture which could host any of the scenarios without 
changing any code. All specifications needed to move between scenarios were made 
in a initialization file.

17



18

Lessons Learned
Scenario 1 
• Integrated Low Fidelity UCAV Like Model 

and Controllers For Use in Subsequent 
Scenarios.

• Modified TCAS For Autonomous Use.
• Validated TCAS During Non 

Communicating Engagements.
• Identified TCAS Model Deficiencies.
• Familiarized With OCP Environment

1-On-1 Non-Cooperating

The first demonstration scenario provided a foundation for all simulations that 
followed. The overall vehicle architecture and signals specifications were defined 
and integrated into the OCP 2.0 environment. A UAV model was integrated into the 
architecture along with a inner loop controller and a simple 4-D waypoint guidance 
routine. This combination was set as the baseline Ownship vehicle for all future 
demonstrations. To achieve the collision avoidance aspect of the scenario an 
algorithm based on the Traffic Collision Avoidance System was developed. This 
TCAS algorithm, which normally provides warnings and suggested climb rates to 
pilots, was modified to directly modify the altitude command being sent to the 
guidance routine resulting in a successfully performed collision avoidance 
maneuver. The transition from a passive warning system with a pilot in the loop to 
an active autonomous controller required some modifications to the TCAS 
command logic. A time latch was added to the initiation of a TCAS alert as well as 
a time delay to the disengaging of the TCAS alert. The addition of the initiation 
latch solved the  chatter issue observed in some specific scenarios where the TCAS 
command would flash on and off for a short period of time while the intruder 
vehicle was on at the edge of the alert thresholds. The need for a disengage time 
delay was observed during scenarios were the disengaging of TCAS caused the 
Ownship to return to its original flight path before a large enough separation was 
achieved with the intruding vehicle. The delay allowed enough time to achieve 
sufficient separation between the vehicles before disengaging. With these 
modifications multiple 1 on 1 scenarios were tested, validating the autonomous 
collision avoidance maneuver as well as the vehicle models OCP implementation. 

18



19

Lessons Learned
Scenario 2 & 3 
• Integrated Generic Tactical Fighter (GTF) 

and Simple NASA Inner Loop Controller 
based on Technical Paper 1538.

• Pilot Interface Added
• Developed Blending Algorithm to 

Combine AutoPilot and Pilot’s Commands
• Removed Asymmetry in Data Provided By 

NASA
• Developed Autonomous Cooperative 

TCAS

1-On-1 Cooperating

Human-in-the-Loop

The second demonstration consisted of scenarios 2 and 3. In these scenarios the 
GTF model was introduced to the OCP environment along with a pilot in the loop 
capability. The TCAS algorithm matured to include cooperative conflict resolutions 
and hardware was introduced to the simulation. With the addition of a pilot 
interface, a component was added to the outer loop to fuse the pilot’s commands 
with the autopilot’s. A pilot could fly continuously around the other vehicle causing 
various TCAS based maneuvering to avoid any midair collisions. A TCAS alert was 
added to the pilot interface to alert the pilot that a maneuver was necessary to 
deconflict a possible collision when the autopilot and the autonomous collision 
avoidance was disengaged. Although the pilot was alerted of a necessary maneuver, 
he was not required to obey it thus creating a need for the other vehicle to recognize 
and adjust its own maneuver to accommodate. This functionality along with 
cooperative conflict resolution was added to the TCAS algorithm for the 
demonstration of theses two scenarios.

19



20

Presentation Outline

• Program Summary
• Program Results/Lessons Learned

• Scenario 1 - 1-On-1 Non-Cooperating
• Scenario 2 - 1-On-1 Cooperating
• Scenario 3 - Human-in-the-Loop

• Final Simulation Demonstration
• Scenario 4 - Formation Flight (Pack Formation)
• Scenario 5 - Formation Flight (S-Curve)
• Scenario 6 - Formation Flight With Collision Avoidance
• Scenario 7 - Formation Flight Random Fault Triggering

• Transition

20



21

Scenario Implementation
Formation Flight

Random Fault Triggering

VBMS SubrScene

VBMS Server/
Database
(LINUX)

UCAV/GTF

The final demonstration was performed on Linux machines only with the exception 
of the PowerPC hardware running VxWorks. Only two separate OCP models, one 
UAV and one GTF, were necessary for all scenarios. Multiple instances of the two 
models could be created and initialized at start up allowing for an unlimited number 
of combinations of vehicles for the last two scenarios. Due to limited processors it 
was determined that a maximum of four vehicles could be run safely (without the 
worry of frame overruns). Therefore all pack only scenarios consisted of four 
vehicles flying in a diamond formation and all scenarios mixing a pack with one 
intruder consisted of three vehicles in a V formation and one intruder GTF vehicle. 
For the fault scenarios, the ability to set a particular failure to occur at a particular 
time was provided by the initialization file. Any of the control surfaces (rudder, 
aileron or elevator) could be set to have a hard over failure at any time. For use in 
the demonstration only the aileron hard over was implemented.

21



Demonstration scenario 4 is the first demonstration of formation flight. The 
scenario includes four vehicles initially spread out over approximately 1 mile. As 
the scenario begins, the lead vehicle begins to track its predetermined waypoints 
while the three following vehicles use their station keeping controller to converge 
on their position in a tight co-altitude diamond formation. The position in the pack 
as well as the separation distances are set in an initialization file that is read in at the 
beginning of the simulation. All positions in the pack are in reference to the lead 
vehicle. 

22

Demonstration Scenario #4
Formation Flight

Vehicles Start Spread Out 
Across Approximately 1 
Mile
•Station Keeping Algorithm 
Brings Vehicles Into 
Diamond Formation

•Formation Determined 
By Initialization File

22



23

Demonstration Scenario #4

The plots of demonstration scenario 4 show that the vehicles successfully tracked 
their position in the diamond formation. One issue noted was that the station 
keeping algorithm gains were loosely tuned in order to allow for the vehicles to 
converge on their positions when initialized to have huge offset errors. This is 
apparent in the horizontal tracking oscillations observed in the lower zoomed in 
display of the Flight Path graph. These oscillations dampened out over a 30 second 
time period which resulted in a tight diamond formation shown in the final position 
of the vehicles in the upper zoomed in Flight Path graph. The altitude loss depicted 
in the first 30 seconds by the follower vehicles are a result of the sharp turning 
needed to acquire their pack position. Once the are in the vicinity of their correct 
position their altitude climbs back to the altitude of the leader.

23



24

Demonstration Scenario #5
Formation Flight

•Continuation of Scenario 4
•S-Turn Formation Flight
•Vehicles Maintain ~50 ft 
Separation During Turns

•Formation Determined By 
Initialization File

•Followers React to Leader
•Lag Seen In Turns

Demonstration scenario 5 is a continuation of scenario 4. The vehicles which 
merged to form the diamond pack formation in scenario 4 continue on to perform 
formation s-turns. The entire time the vehicles maintain ~50 ft separation from there 
nearest neighbor. All maneuvering is triggered by the lead vehicle’s waypoint file. 
The pack vehicles have no prior knowledge of the flight plan and simply react to the 
lead vehicles.

24



25

Demonstration Scenario #5

The plots of demonstration scenario 5 show that the pack successfully performs 
multiple turns while staying in formation. There is apparent lag between the lead 
vehicle and the reaction of the following vehicles.The lower zoomed in view gives 
an example of this lag as the lead vehicle actually gets on the left hand side of his 
left wingman before the wingman reacts and correctly repositions itself. The end 
result, as in scenario 4, is a close nit diamond formation. Altitude once again 
bounced around as turns were being performed. The amplitude of this altitude jitter 
is greater in the follower vehicles due to the fact that they are reacting to the lead 
vehicles altitude jitter. Also it is noted that during the turns the inside vehicle needs 
to slow down and the outside vehicle needs to speed up in order to maintain their 
relative position in the pack. Between scenarios 4 and 5, it is shown that the 
latitude, longitude, altitude, and speed controllers of the station keeping algorithm 
are performing fairly well and are robust enough to handle multiple scenarios.

25



26

Demonstration Scenario #6
1-On-1 Cooperating

Formation Flight

Human-in-the-Loop

Play Video

•Leader and GTF Perform 
Cooperative Collision 
Avoidance
•Followers React Only To 
Leader

•Ignore Own TCAS Alerts
•Lag Seen In Avoidance 
Maneuver

Demonstration scenario 6 adds an intruder vehicle to the path of a pack. The pack 
used in this scenario consists of only three vehicles in a V formation along with an 
intruder GTF. The reason for this was simple processing power. There is no 
limitation to the number of vehicles that the final architecture can support. The only 
limitation is processor time. With more than five vehicles running frame overruns 
became more frequent and problems arose. This scenario added the 1 on 1 
cooperating  collision avoidance as well as the human in the loop feature with the 
formation flight scenario. The GTF receives position data from all of the pack 
vehicles and vice-a-versa. Only the lead vehicle and the GTF respond to their TCAS 
command while the followers simply respond to lead vehicle’s. The follower 
vehicles’ TCAS continue to track the GTF but ignores the command.

26



27

Demonstration Scenario #6

The plots of demonstration scenario 6 show the obtuse engagement scenario. The 
pack and GTF begin the scenario at the same altitude causing an estimated collision 
at 100 seconds into the scenario. The GTF’s TCAS commands a climb while the 
UAV leader commands a dive. The GTF’s maneuverability allows it to climb faster 
than the UAV can dive which the TCAS algorithm takes advantage of. This results 
in the GTF providing about ¾ of the separation needed. The lag seen in scenario 5’s 
turns becomes apparent again in the dive command. The follower vehicles react 
slowly to the lead vehicles dive. The idea to allow all vehicles in the pack to 
command their own collision maneuver was a possible solution to this problem but 
actually created a greater problem of the possibility of conflicting climb/dive 
commands amongst the pack members. With this in mind the lag response was 
deemed to be the acceptable choice.

27



28

Demonstration Scenario #7
Formation Flight

Random Fault Triggering

•Aileron Hard Over Occurs 
in Leader at 30 Seconds

•Set From Initialization File

•All Followers Using Kalman 
Filter to Monitor Leader

•Erratic Leader Behavior 
Triggers Fault Detection
•Fault Engages TCAS
•Vehicles Climb To Avoid 
Leader
•New Leader Appointed
•Readjust Formation

Demonstration scenario 7 is a continuation of the pack scenarios 4 and 5 with the 
addition of a hard over control surface failure. At 30 seconds into the simulation an 
aileron hard over occurs in the lead vehicle causing it to cut in front of the rest of 
the pack. Each pack member’s Kalman filter independently detects the erratic 
behavior of the lead vehicle and reconfigure their TCAS filter to include the leader 
as a intruding vehicle which needs to be avoided. At the same time a new leader is 
appointed and the new leader uses its TCAS to maneuver the pack out of the way. 
The pack then reorganizes itself around the new leader and continues on its original 
waypoint plan. When the new leader is appointed, each follower’s Kalman filter is 
reset to track the new leader. If the new leader incurs a fault, the same process 
occurs and a new lead vehicle is set. All faults are set by a token in the initialization 
file which specifies both the type and time.

28



29

Demonstration Scenario #7

The plots of demonstration scenario 7 show the pack flying due north. The lead 
vehicle is at an altitude of 25000 ft while the other vehicles follow at 100 ft below. 
This altitude separation was set to allow for the lead vehicle to cut in front of the 
pack causing a situation that the other vehicles must react. If all vehicles were at a 
co-altitude when the fault occurred the lead vehicle would descend out of the 
restricted safety area of the new leader before any maneuver could be implemented. 
By shifting the lead vehicle 100 ft up, the new leader appointed after the fault 
quickly determines a climb is necessary. The followers then respond to this climb 
and reposition themselves around the new leader.

29



30

Demonstration Scenario #7

A more detailed look at three instances scenario (before, during and after the 
failure) gives some insight into what occurred in a very short amount of time. The 
graphs on the left depict a time slice before the failure has occurred. All the vehicles 
are in a tight diamond formation with the lead vehicle 100 ft  above the rest of the 
pack. In the middle graphs, the failure has just occurred and the leader has cut in 
front of the right hand wingman. The altitude graph shows the newly appointed blue 
leader began to climb almost immediately after the lead vehicle began to act 
erroneous. It is also seen on this graph the the other two vehicles began to dive. This 
is not the cause of the collision avoidance algorithm but instead the transition from 
one leader to another. The two remaining followers are attempting to obtain the 100 
ft altitude separation and since they were co-altitude when the new leader was 
appointed  they immediately dive. In the flight path graph depicting just after failure 
it can also be seen that the followers are attempting to horizontally track their new 
leader. Finally, in the graphs on the right hand side, the end result is depicted. The 
new leader has positioned itself using the preset waypoints and the followers have 
repositioned themselves around the new leader.

30



31

Presentation Outline

• Program Summary
• Program Results/Lessons Learned

• Scenario 1 - 1-On-1 Non-Cooperating
• Scenario 2 - 1-On-1 Cooperating
• Scenario 3 - Human-in-the-Loop

• Final Simulation Demonstration
• Scenario 4 - Formation Flight (Pack Formation)
• Scenario 5 - Formation Flight (S-Curve)
• Scenario 6 - Formation Flight With Collision Avoidance
• Scenario 7 - Formation Flight Random Fault Triggering

• Path Forward

31



32

OCP User Development Process
Need A Well Defined Static Interface Control Document

• Modifications During Development Create Problems
• GUI BackEnd API Tool Can Introduce Error

• User Preserve Region Loss
• Signal Order Switch
• Created Corrupted Files When Modifying Sequence Signals
• Renaming Of Some Components Are Not Updated 
• Unable To Remove Triggers Once Built

• Allows Proper Initialization of Signals
Set Up Simulation Outside of OCP

• Difficult To Debug Inside OCP
• Allows Batch Testing At High Speeds

• Confirm If Code Is Efficient (Capable Of Running Real-Time)
• OCP Overhead Can Slow Code

Throughout the program, many lessons were learned about the OCP development 
process. The first and most important is to have a well defined interface control 
document which remains as static as possible throughout the development. The 
extra time spent refining the interface before beginning the actual development can 
save a lot of pain in the future. Although OCP provides an API tool to simplify 
modifications, there were problems observed after a change was made. Loss of user 
supplied code which was inserted in an area specified to be a protected preserve 
region was observed when modifications were made to the interface. The most 
dangerous problem observed by changing the interface during development was the 
rearranging of signal member order. This problem created an instance which took 
many days to diagnose. The problem was that the command sent from the inner 
loop controller to the vehicle model consisted of four double members in the order 
elevator, aileron, rudder, and throttle. When a modification was made to a separate 
signal, the API tool regenerated the code and switched the send order to aileron, 
elevator, rudder, and throttle. Although the members order was switched there was 
no warning and no errors showed up during compiling. To diagnose what went 
wrong, the entire model had to be rebuilt one component at a time to see where the 
problem appeared. This problem occurred a second time and was caught a little 
sooner but still took some time track the error. Another aid to diagnose these 
problems is to first set up the simulation outside of OCP. This allows for high speed 
batch testing while providing a control to compare OCP results to for verification 
purposes. It also is much easier to debug code being developed outside of OCP.

32



33

OCP User Development Process Cont.
Input One Component At A Time

• Allows Individual Testing Of Components
• Isolates Problems That May Arise During OCP Integration
• Difficult Due To BackEnd Tool Issues

Add Text File Outputs For Each Component 
• Eases Problem Tracking
• Ability To Compare Results To Simulation Outside Of OCP

Create Wrapper Which Allows Static OCP Code Which Interfaces 
With User Code

• Allow Use of Libraries
• Implemented In NGC SEC Experiments
• Ease Switching Algorithms

The next suggested OCP development practice is to build the simulation in steps. 
Inputting one component at a time allows for individual validation that the code is 
working properly. Also it was found that external text files outputs recording data 
throughout the simulation allowed quicker tracking of problems since debugging in 
OCP is so difficult.The final development process which was discovered during this 
program but not implemented was the use of a wrapper interface to create a static 
interface that remained unchanged inside the OCP code while linking in a library 
that could be compiled separately. This not only allows the protection of source 
code by use of a library but removes the need to recompile the OCP code whenever 
changes are made. Instead you would compile the new library and then re-link the 
OCP process. This technique was used in the development of SEC OCP code used 
in the flight demonstration.

33



34

Matlab AutoCode Generation Process
Embedded Real Time Workshop
• Much Easier To Read and Interface
• Use Interface Definition To Outline Simulink Subsystem
• Use of Signal Specification Blocks Allows Array Naming in 

AutoCode
• External Inputs and Outputs Defined As Structure
• Default Structure Will Consist of Every Variable

• Use Tunable Parameters To Ease Adjustments Of Control Gains
• Matlab 6.5 Auto Code Limitations

• S-functions Not Supported In Matlab 6.5
• Multiple Simulink Blocks Not Supported in Matlab 6.5

• New Matlab 7 Supports Both S-functions, Embedded Matlab and 
More of the Simulink Blocks
• Embedded Matlab Greatly Increases Simulink Model Capabilities
• Define Your Own Simulink Blocks With Matlab Code

This program was one of the first at NGC to use Matlab auto code produced by the 
Embedded Real Time Workshop toolbox. The code generated was much easier to 
read and interface to than the Generic Real Time Workshop code. The auto code 
creates one external input and one external output structure used to interface the 
code. The interface definition document can be used to outline the Simulink 
subsystems and with the use of signal specification blocks the auto code interface 
can be modified to emulate the naming convention. For code which contains 
parameters that may need to be changed, the tunable parameter function provides 
easy access to hand modify the values. This becomes useful for cases such as 
controller gains which may be modified for different vehicles. Instead of needing to 
auto code two versions of the same controller a tunable parameter can be used to 
switch between two models different gains.
Matlab 7.0 greatly increased the functionality of the Simulink auto coder. The new 
version allowed auto coding s-functions as well as embedded Matlab functions 
which allowed the user to define their own Simulink blocks with Matlab functions.

34



35

Value Added
TCAS
• Algorithm Used In AFRL/DARPA AFCST Program

• Follow-on Program SeFAR
• Basis For Upcoming ACCESS 5 NASA Program

OCP Foundation For SEC
• Integration Knowledge

• MATLAB AutoCode Experience
• Implement AutoCode Generate To OCP Without Modifying 

Internal OCP Code

OCP Maturation
• Put OCP Through The Rigors Of Real World Applications

• Brought To Light Application Issues
• Boeing Solved Problems And Incorporated In OCP 

Updates

The HITL program benefited all parties involved. The TCAS algorithm developed 
under the program was used in the Autonomous Flight Control Sensing Technology 
(AFCST)  AFRL/DARPA program and will continue to be used as a surrogate 
TCAS in the follow on program Sensing for UAV’s Awareness (SeFAR) to be 
replaced by a commercially available TCAS. The knowledge gained from the 
development of the TCAS model was also leveraged for the ACCESS 5 program 
sponsored by NASA/FAA/DoD with a goal of obtaining FAA approval for UAV 
vehicles to fly in national airspace. The OCP experience and knowledge gained on 
the HITL program was heavily used in the integration of SEC flight code including 
MATLAB Simulink auto code. This was especially the case since the NGC 
technology software for SEC was completely developed in the Simulink 
environment.
The OCP middleware was put through the rigors of Real World applications. The 
program began with the use of OCP B2.0 and finished with OCP B2.4+. The plus 
represents that updates to version 2.4 were present in the final demonstration. The 
HITL program feels they were partly responsible for distinguishing problems along 
with suggesting useful features which Boeing was able to incorporate into newer 
versions of OCP.

35



36

Value Added Cont.
Demonstrates Benefits of Middleware
• Communication Across Multiple Platforms
• Portability
• Ease of Development

• Debugging In Linux Is Painful (Average Controls Engineer)

Expose Non-Software Personnel To Software 
Requirements And Software Personnel To Real World 
Applications
• Invaluable Knowledge Growth

The HITL program also demonstrated the benefits of a middleware. The OCP 
platform was used to develop algorithms on a Windows desktop machine. This 
eased the development process by enabling user friendly debugging provided by the 
Microsoft Visual Studio environment. The simulation was then easily ported onto 
Linux boxes and even VxWorks on a PowerPC board all without modification of 
the source code. Throughout the program, multi platform simulations were 
demonstrated including all combinations of Windows, Linux, and VxWorks. The 
program also exposed the non-software savvy controls engineer to software 
requirements and implementations while also allowing software personnel to get 
feedback from those who work with real world applications. The program also left 
in place at the AFRL/VACD laboratory two simulation models with replaceable 
OCP components to be used for future integration of control algorithms. Also 
developed was the ability to display real-time simulations in OCP with the VBMS 
and Subrscene visualization tools. Overall the knowledge growth of all parties 
involved created by this environment was immeasurable. 

36



37

Remaining OCP Issues
Real-Time Capabilities
• Currently Unable To Produce Constant Frame Rate
• Separate OCP Instances Run at Different Rates

• Cause Problems In Algorithms
• Communicated Data Unpredictable

• Futuristic Time Stamps
• Multiple Repeated Data

• Boeing Developed Last Minute Patch
• Universal Frame Controller

• Work Around Not Solution
OCP Overhead
• Code Runs Considerably Slower Inside OCP

Environment Differences
• Simulation Performance Varies

At the end of the program there were still some issues remaining with the OCP 
middleware. The real-time capabilities on the Linux platform was observed to be 
limited. There was an inability to produce constant frame rates. On Windows or 
Linux operating systems the frame rates have been observed to vary by +/- 1 
millisecond on a 50 Hz frame. With the use of separate OCP instances used for 
multiple vehicles this problem was exposed due to an exaggerated time drift as the 
simulation ran. The drift became apparent in the internal simulation times, which 
are calculated by the use of a fixed time step. Time dependent algorithms began to 
act erroneously. After closer examination of the data it was discovered that each 
instance’s clock was slowly drifting, which was remedied by the implementation of 
a master trigger for all processes. Though this work around remedied the problem 
for the demonstration it did not resolve the issue of needing a guaranteed constant 
frame rate for real time applications. It was also observed that the processing 
overhead created by OCP limited the capabilities of the demonstration. Code which 
was tested outside of OCP ran much faster than when implemented inside of an 
OCP process. To some degree this is expected but it is believed that the current state 
is not optimal.

37



38

Remaining OCP Issues Cont.
Frame Overrun Handling

• Causes Component Skipping
• Component Behavior Triggered By Inputs

• Overrun Components Don’t Send Signal
• Dependent Components Not Run That Frame

• Need Multiple Behaviors 
• One For Input Signal Storage
• One For Running Code (Separate Trigger)
• Constant Frame Rate Issue

1 2 3 4 5 6 7

Frames

P1 P2 P1 P1 P1 P1 P1 P1P2 P2 P2 P2 P2 P2

P1 P2 P1 P1 P1 P1 P1 P1P2 P2 P2 P2 P2 P2

Time

Sim 1

Sim 2

When a frame overrun occurs, the next component, which is waiting for an input 
signal, does not run. In effect, the behavior skips a frame to catch up instead of 
proceeding with the most current data. Problems arise when there are components 
of the simulation not controlled by the same frame controller. The example shown 
contains two OCP simulation instances running independently. The two processes 
represent the Plant Model (P1) and the Controller (P2). In the second frame of sim 1 
the Plant Model has a frame overrun. This causes the controller not to run during 
this frame. The simulation then picks back up at frame 3 for P2. During this time 
the other sim is able to meet each frame and therefore by the end of this 7 frame 
example it is 2 frames behind causing the plant model to be 2 time steps behind. 
Any communication between the two vehicles is affected by time drifts and 
repeated data as the simulation progresses.
In Linux, if Process1 crashes or is closed first, a complete reboot of the machine is 
required. In Windows this only hangs up your machine for a while. 
Debugging problems in this environment is extremely difficult due to the lack of 
repeatability. Each run provides a slightly different frame rate. 

38



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


